国产精品人妻一码二码,久久精品国产只有精品96,被男人嗦过奶头一下就变大了,久久超碰97人人做人人爱

020-8288 0288

基于高光譜成像技術的高光譜圖像數據降維方法

發布時間:2024-11-01
瀏覽次數:239

高光譜數據是一個三維數據塊,這個三維數據塊包含很多的光譜信息,使得三維數據塊之間存在大量冗余信息,可能影響建模結果。因此,在進行預測模型之前,需要對光譜圖像數據進行降維處理。本文對高光譜圖像數據降維方法做了介紹。

高光譜數據是一個三維數據塊,這個三維數據塊包含很多的光譜信息,使得三維數據塊之間存在大量冗余信息,可能影響建模結果。因此,在進行預測模型之前,需要對光譜圖像數據進行降維處理。本文對高光譜圖像數據降維方法做了介紹。

高光譜三維立體圖像

高光譜數據是一個三維數據塊,不僅可以提取每個像元的光譜信息,而且每個波長都對應一幅灰度圖像。但是,對于分辨率較高的高光譜數據,每個數據塊就包含上百幅圖像信息,數據量過大,會降低后期的數據處理速度,并且波段較多,光譜信息之間相關性很強,使得三維數據塊之間存在大量冗余信息,可能影響建模結果。因此,在數據處理過程中,高光譜數據的降維是減小噪聲,提高模型識別速率和識別準確率的有效手段。


1.主成分分析(PCA)

主成分分析(PCA)是被較多應用的一種數據降維方法。PCA變換是將有相關性的原始變量沿協方差最大的方向投影,使經過坐標變換的高維空間數據映射到低維空間,得到線性不相關的新變量,即主成分。主成分按照方差從大到小的順序依次稱為第一主成分(PC1)、第二主成分(PC2),以此類推。原始高光譜數據經過PCA變換,可以看作各個主成分圖像的線性組合,主成分圖像所占原始圖像信息的比重由方差貢獻率決定。一般,當主成分的累計貢獻率達到一定比例,如85%以上,即可解釋大部分高光譜數據信息。因此,經過PCA變換的高光譜數據僅需少量主成分就可以極大程度上表征原始信息,大大減少了數據處理時間,并消除原始數據之間冗余的信息。


2.最小噪聲分離變換(MNF)

對于高光譜數據降維,最小噪聲分離變換(MNF變換)的主要目的在于分離高光譜數據的信號和噪聲,提高信噪比。該算法可以看作是兩次主成分變換的疊加。首先,基于圖像噪聲的協方差矩陣進行正向變換,然后,對多維圖像去相關、重定標。變換之后的數據關聯到兩個部分:一個部分是較大特征值,及其特征圖像;另一個部分則是較小特征值,及其噪聲圖像。特征值的大小決定特征圖像的信噪比高低,用來確定有效的特征圖像。最后,正向變換后確定的圖像子集被作標準主成分變換,恢復為對應的原始圖像。MNF將噪聲比例大的圖像排除,使有效的高光譜數據量大幅度上漲。

聯系我們

Contact us
廣東賽斯拜克技術有限公司
  • 地址:廣州市增城區新城大道400號智能制造中心33號樓601
  • 電話:020-8288 0288   13500023589
  • 郵箱:3nh@3nh.com
  • 網址:http://616sao.com
Copyright © 2024 廣東賽斯拜克技術有限公司 版權所有
  • 公司聯系方式
    QQ
  • 網站首頁
    首頁
  • 公司聯系電話
    電話
  • 返回
    返回頂部