国产精品人妻一码二码,久久精品国产只有精品96,被男人嗦过奶头一下就变大了,久久超碰97人人做人人爱

020-8288 0288

解析高光譜圖像特征提取方法

發布時間:2023-08-04
瀏覽次數:543

高光譜遙感技術具有能同時反映遙感對象空間特征和光譜特征等優勢,但這些優勢也帶來了波段眾多且相關性強、數據冗余度高、不利于進一步處理與利用等問題。

高光譜遙感技術具有能同時反映遙感對象空間特征和光譜特征等優勢,但這些優勢也帶來了波段眾多且相關性強、數據冗余度高、不利于進一步處理與利用等問題。通過降維可以減少數據中的冗余信息,提高處理效率,而特征提取作為降維的一種重要方法,具有降維速度快等優點。因此,特征提取對高光譜圖像的利用有重要意義。

解析高光譜圖像特征提取方法


高光譜圖像降維基本原理


高光譜圖像降維方法可分為基于特征提取的方法和基于特征選擇的方法兩類。高光譜圖像特征選擇又稱波段選擇,波段選擇的定義是從一組數量為K的原始特征中,按照令準則函數J(X)最大的原則,選擇出數量為k(k


高光譜圖像特征提取,即將原始高光譜數據從高維光譜特征空間按照某一變換方式,投影到一個維數更低的子空間。特征提取過程如圖3所示,其中F(X1,…,X5)表示一個線性或者非線性的變換方程。

波段選擇受搜索算法和準則函數的影響,不可避免地會損失大量信息,而特征提取方法可以經過變換直接將高維數據降維到目標維數,降維速度快。


高光譜圖像特征提取研究現狀


特征提取方法可分為傳統機器學習方法以及深度學習方法兩類,如圖4所示。其中,傳統機器學習方法根據特征空間映射函數的形式又可分為線性方法和非線性方法。

傳統機器學習方法


線性方法

假設高維數據采樣于線性結構中,并通過一個線性形式的變換實現高光譜圖像特征提取。根據利用樣本類別信息的情況,線性方法可進一步細分為無監督、有監督及半監督學習3種學習方法。其中,數據集中只有部分樣本含有類別標簽,同時使用有標記和無標記樣本實現降維的算法屬于半監督學習方法。因為半監督方法的相關研究較少,所以本文著重對無監督和有監督方法進行介紹。


非線性方法


雖然線性方法普遍具有理論成熟、原理簡單、便于實現和使用等優點,但高光譜數據屬于非線性數據,利用線性方法對高光譜圖像數據進行維數約減往往無法取得滿意的效果。

深度學習方法


深度學習是機器學習領域的分支之一,旨在構造一個可訓練的深層模型仿效人腦分析和處理問題的過程。高光譜圖像多種多樣,一種特征提取方法很難在所有類型的數據中均取得良好的效果,這是傳統機器學習方法普遍存在的問題。深度學習方法很好地解決了這個問題,針對不同類型的數據學習特征,深度學習模型可以根據不同的數據自主地學習特征。


高光譜圖像特征提取存在的問題與研究方向


高光譜圖像特征提取技術作為一種預處理技術,減少了數據中的冗余信息,提高了目標檢測、分類等后續應用的效果,極大地促進了高光譜遙感技術的發展。但目前的特征提取技術及算法還存在很多局限性,主要表現在以下幾個方面。


1)有些高光譜特征提取算法時間復雜度過高、運算時間過長,即使精度有一定提高也得不償失,不適于某些對算法實時性要求很高的場合。

2)許多高光譜特征提取算法都含有參數,對于算法的使用者而言,調參是一個耗時費力的過程,且參數的取值對算法的效果有顯著影響,所以最佳參數的選擇是一個難以解決的問題。

3)高光譜圖像提供了豐富的空間、光譜信息,但目前絕大多數特征提取算法都只利用了高光譜圖像的光譜信息,如何高效地綜合利用高光譜圖像的空間、光譜信息是有待進一步深入研究的問題。


研究方向


針對高光譜圖像特征提取方法的研究現狀及存在的問題,提出了一些解決問題的思路及有價值的研究方向。

1)利用Spark或CUDA并行編程框架實現諸如流形學習等時間復雜度較高算法的并行化,可以有效縮短算法的運行時間。

2)完善特征提取算法的理論體系,為解決目前存在的問題提供理論依據,例如為核方法中核函數以及核參數的選擇提供理論依據。

3)在對高光譜圖像數據進行特征提取之前對高光譜圖像進行空間濾波,從而綜合利用高光譜圖像的空間信息及光譜信息。

4)在實際應用中,對高光譜圖像數據進行標記的成本較高且有些數據無法進行標記,所以無監督或半監督特征提取算法是后續研究的重點。5)深度學習作為目前機器學習領域熱門的研究方向,具有許多傳統機器學習方法所不具備的優勢,基于深度學習的高光譜特征提取方法是一個研究方向。

本文標簽: 高光譜圖像特征提取

聯系我們

Contact us
廣東賽斯拜克技術有限公司
  • 地址:廣州市增城區新城大道400號智能制造中心33號樓601
  • 電話:020-8288 0288   13500023589
  • 郵箱:3nh@3nh.com
  • 網址:http://616sao.com
Copyright © 2024 廣東賽斯拜克技術有限公司 版權所有
  • 公司聯系方式
    QQ
  • 網站首頁
    首頁
  • 公司聯系電話
    電話
  • 返回
    返回頂部